3.699 \(\int \frac{(c+d x^2)^{5/2}}{x (a+b x^2)} \, dx\)

Optimal. Leaf size=124 \[ \frac{d \sqrt{c+d x^2} (2 b c-a d)}{b^2}+\frac{(b c-a d)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{a b^{5/2}}-\frac{c^{5/2} \tanh ^{-1}\left (\frac{\sqrt{c+d x^2}}{\sqrt{c}}\right )}{a}+\frac{d \left (c+d x^2\right )^{3/2}}{3 b} \]

[Out]

(d*(2*b*c - a*d)*Sqrt[c + d*x^2])/b^2 + (d*(c + d*x^2)^(3/2))/(3*b) - (c^(5/2)*ArcTanh[Sqrt[c + d*x^2]/Sqrt[c]
])/a + ((b*c - a*d)^(5/2)*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]])/(a*b^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.190523, antiderivative size = 124, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {446, 84, 154, 156, 63, 208} \[ \frac{d \sqrt{c+d x^2} (2 b c-a d)}{b^2}+\frac{(b c-a d)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{a b^{5/2}}-\frac{c^{5/2} \tanh ^{-1}\left (\frac{\sqrt{c+d x^2}}{\sqrt{c}}\right )}{a}+\frac{d \left (c+d x^2\right )^{3/2}}{3 b} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x^2)^(5/2)/(x*(a + b*x^2)),x]

[Out]

(d*(2*b*c - a*d)*Sqrt[c + d*x^2])/b^2 + (d*(c + d*x^2)^(3/2))/(3*b) - (c^(5/2)*ArcTanh[Sqrt[c + d*x^2]/Sqrt[c]
])/a + ((b*c - a*d)^(5/2)*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]])/(a*b^(5/2))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 84

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Simp[(f*(e + f*x)^(p -
 1))/(b*d*(p - 1)), x] + Dist[1/(b*d), Int[((b*d*e^2 - a*c*f^2 + f*(2*b*d*e - b*c*f - a*d*f)*x)*(e + f*x)^(p -
 2))/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 1]

Rule 154

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\left (c+d x^2\right )^{5/2}}{x \left (a+b x^2\right )} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{(c+d x)^{5/2}}{x (a+b x)} \, dx,x,x^2\right )\\ &=\frac{d \left (c+d x^2\right )^{3/2}}{3 b}+\frac{\operatorname{Subst}\left (\int \frac{\sqrt{c+d x} \left (b c^2+d (2 b c-a d) x\right )}{x (a+b x)} \, dx,x,x^2\right )}{2 b}\\ &=\frac{d (2 b c-a d) \sqrt{c+d x^2}}{b^2}+\frac{d \left (c+d x^2\right )^{3/2}}{3 b}+\frac{\operatorname{Subst}\left (\int \frac{\frac{b^2 c^3}{2}+\frac{1}{2} d \left (3 b^2 c^2-3 a b c d+a^2 d^2\right ) x}{x (a+b x) \sqrt{c+d x}} \, dx,x,x^2\right )}{b^2}\\ &=\frac{d (2 b c-a d) \sqrt{c+d x^2}}{b^2}+\frac{d \left (c+d x^2\right )^{3/2}}{3 b}+\frac{c^3 \operatorname{Subst}\left (\int \frac{1}{x \sqrt{c+d x}} \, dx,x,x^2\right )}{2 a}-\frac{(b c-a d)^3 \operatorname{Subst}\left (\int \frac{1}{(a+b x) \sqrt{c+d x}} \, dx,x,x^2\right )}{2 a b^2}\\ &=\frac{d (2 b c-a d) \sqrt{c+d x^2}}{b^2}+\frac{d \left (c+d x^2\right )^{3/2}}{3 b}+\frac{c^3 \operatorname{Subst}\left (\int \frac{1}{-\frac{c}{d}+\frac{x^2}{d}} \, dx,x,\sqrt{c+d x^2}\right )}{a d}-\frac{(b c-a d)^3 \operatorname{Subst}\left (\int \frac{1}{a-\frac{b c}{d}+\frac{b x^2}{d}} \, dx,x,\sqrt{c+d x^2}\right )}{a b^2 d}\\ &=\frac{d (2 b c-a d) \sqrt{c+d x^2}}{b^2}+\frac{d \left (c+d x^2\right )^{3/2}}{3 b}-\frac{c^{5/2} \tanh ^{-1}\left (\frac{\sqrt{c+d x^2}}{\sqrt{c}}\right )}{a}+\frac{(b c-a d)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{a b^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.110131, size = 114, normalized size = 0.92 \[ \frac{d \sqrt{c+d x^2} \left (-3 a d+7 b c+b d x^2\right )}{3 b^2}+\frac{(b c-a d)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^2}}{\sqrt{b c-a d}}\right )}{a b^{5/2}}-\frac{c^{5/2} \tanh ^{-1}\left (\frac{\sqrt{c+d x^2}}{\sqrt{c}}\right )}{a} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x^2)^(5/2)/(x*(a + b*x^2)),x]

[Out]

(d*Sqrt[c + d*x^2]*(7*b*c - 3*a*d + b*d*x^2))/(3*b^2) - (c^(5/2)*ArcTanh[Sqrt[c + d*x^2]/Sqrt[c]])/a + ((b*c -
 a*d)^(5/2)*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^2])/Sqrt[b*c - a*d]])/(a*b^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.012, size = 3148, normalized size = 25.4 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2+c)^(5/2)/x/(b*x^2+a),x)

[Out]

-7/16/a*d*(-a*b)^(1/2)/b*c*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2
)*x+7/16/a*d*(-a*b)^(1/2)/b*c*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(
1/2)*x+1/5/a*(d*x^2+c)^(5/2)-1/10/a*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c
)/b)^(5/2)-1/10/a*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(5/2)-15/16/a
/b*d^(1/2)*(-a*b)^(1/2)*ln((d*(-a*b)^(1/2)/b+(x-1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a
*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))*c^2-1/8/a*d*(-a*b)^(1/2)/b*((x-1/b*(-a*b)^(1/2))^2*d+2*d*
(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)*x+1/6/b*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x
+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)*d-1/6/a*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2)
)-(a*d-b*c)/b)^(3/2)*c-1/2/a*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1
/2)*c^2+1/3/a*c*(d*x^2+c)^(3/2)-1/a*c^(5/2)*ln((2*c+2*c^(1/2)*(d*x^2+c)^(1/2))/x)+1/a*(d*x^2+c)^(1/2)*c^2+1/6/
b*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)*d-1/6/a*((x-1/b*(-a*b)^
(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)*c-1/2/a*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-
a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)*c^2-1/2*a/b^3*d^(5/2)*(-a*b)^(1/2)*ln((d*(-a*b)^(1/2)/b+(
x-1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^
(1/2))-1/2*a^2/b^3/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))+2*(-(a*d-b*
c)/b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x-1/b*(-a*b
)^(1/2)))*d^3-3/2/b/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))+2*(-(a*d-b
*c)/b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x-1/b*(-a*
b)^(1/2)))*d*c^2-3/2/b/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*
d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(
-a*b)^(1/2)))*d*c^2-1/4/b^2*d^2*(-a*b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))
-(a*d-b*c)/b)^(1/2)*x-5/4/b^2*d^(3/2)*(-a*b)^(1/2)*ln((-d*(-a*b)^(1/2)/b+(x+1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x+1
/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))*c+1/2*a/b^3*d^(5/2)*(-a*b)^(1
/2)*ln((-d*(-a*b)^(1/2)/b+(x+1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*
(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))-1/2*a^2/b^3/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x+1/
b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-
b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))*d^3-1/2*a/b^2*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^
(1/2))-(a*d-b*c)/b)^(1/2)*d^2+1/b*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/
b)^(1/2)*d*c+1/2/a/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*
c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b
)^(1/2)))*c^3-1/2*a/b^2*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)*d
^2+1/b*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)*d*c+1/2/a/(-(a*d-b
*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x-1/b*(-a*b)^
(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x-1/b*(-a*b)^(1/2)))*c^3+1/4/b^2*d^2*(
-a*b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)*x+5/4/b^2*d^(
3/2)*(-a*b)^(1/2)*ln((d*(-a*b)^(1/2)/b+(x-1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1
/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))*c+3/2*a/b^2/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^
(1/2)/b*(x-1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x-1/b*(-a*b)^(1/2))^2*d+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)
^(1/2))-(a*d-b*c)/b)^(1/2))/(x-1/b*(-a*b)^(1/2)))*d^2*c+3/2*a/b^2/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*
(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b
*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))*d^2*c+1/8/a*d*(-a*b)^(1/2)/b*((x+1/b*(-a*b)^(1/2))^2*
d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)*x+15/16/a/b*d^(1/2)*(-a*b)^(1/2)*ln((-d*(-a*b)^(1
/2)/b+(x+1/b*(-a*b)^(1/2))*d)/d^(1/2)+((x+1/b*(-a*b)^(1/2))^2*d-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b
*c)/b)^(1/2))*c^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (d x^{2} + c\right )}^{\frac{5}{2}}}{{\left (b x^{2} + a\right )} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(5/2)/x/(b*x^2+a),x, algorithm="maxima")

[Out]

integrate((d*x^2 + c)^(5/2)/((b*x^2 + a)*x), x)

________________________________________________________________________________________

Fricas [A]  time = 9.03999, size = 1829, normalized size = 14.75 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(5/2)/x/(b*x^2+a),x, algorithm="fricas")

[Out]

[1/12*(6*b^2*c^(5/2)*log(-(d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(c) + 2*c)/x^2) + 3*(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*s
qrt((b*c - a*d)/b)*log((b^2*d^2*x^4 + 8*b^2*c^2 - 8*a*b*c*d + a^2*d^2 + 2*(4*b^2*c*d - 3*a*b*d^2)*x^2 + 4*(b^2
*d*x^2 + 2*b^2*c - a*b*d)*sqrt(d*x^2 + c)*sqrt((b*c - a*d)/b))/(b^2*x^4 + 2*a*b*x^2 + a^2)) + 4*(a*b*d^2*x^2 +
 7*a*b*c*d - 3*a^2*d^2)*sqrt(d*x^2 + c))/(a*b^2), 1/12*(12*b^2*sqrt(-c)*c^2*arctan(sqrt(-c)/sqrt(d*x^2 + c)) +
 3*(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*sqrt((b*c - a*d)/b)*log((b^2*d^2*x^4 + 8*b^2*c^2 - 8*a*b*c*d + a^2*d^2 + 2*
(4*b^2*c*d - 3*a*b*d^2)*x^2 + 4*(b^2*d*x^2 + 2*b^2*c - a*b*d)*sqrt(d*x^2 + c)*sqrt((b*c - a*d)/b))/(b^2*x^4 +
2*a*b*x^2 + a^2)) + 4*(a*b*d^2*x^2 + 7*a*b*c*d - 3*a^2*d^2)*sqrt(d*x^2 + c))/(a*b^2), 1/6*(3*b^2*c^(5/2)*log(-
(d*x^2 - 2*sqrt(d*x^2 + c)*sqrt(c) + 2*c)/x^2) + 3*(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*sqrt(-(b*c - a*d)/b)*arctan
(-1/2*(b*d*x^2 + 2*b*c - a*d)*sqrt(d*x^2 + c)*sqrt(-(b*c - a*d)/b)/(b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)) + 2*
(a*b*d^2*x^2 + 7*a*b*c*d - 3*a^2*d^2)*sqrt(d*x^2 + c))/(a*b^2), 1/6*(6*b^2*sqrt(-c)*c^2*arctan(sqrt(-c)/sqrt(d
*x^2 + c)) + 3*(b^2*c^2 - 2*a*b*c*d + a^2*d^2)*sqrt(-(b*c - a*d)/b)*arctan(-1/2*(b*d*x^2 + 2*b*c - a*d)*sqrt(d
*x^2 + c)*sqrt(-(b*c - a*d)/b)/(b*c^2 - a*c*d + (b*c*d - a*d^2)*x^2)) + 2*(a*b*d^2*x^2 + 7*a*b*c*d - 3*a^2*d^2
)*sqrt(d*x^2 + c))/(a*b^2)]

________________________________________________________________________________________

Sympy [A]  time = 39.2436, size = 119, normalized size = 0.96 \begin{align*} \frac{d \left (c + d x^{2}\right )^{\frac{3}{2}}}{3 b} + \frac{\sqrt{c + d x^{2}} \left (- a d^{2} + 2 b c d\right )}{b^{2}} + \frac{c^{3} \operatorname{atan}{\left (\frac{\sqrt{c + d x^{2}}}{\sqrt{- c}} \right )}}{a \sqrt{- c}} + \frac{\left (a d - b c\right )^{3} \operatorname{atan}{\left (\frac{\sqrt{c + d x^{2}}}{\sqrt{\frac{a d - b c}{b}}} \right )}}{a b^{3} \sqrt{\frac{a d - b c}{b}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**2+c)**(5/2)/x/(b*x**2+a),x)

[Out]

d*(c + d*x**2)**(3/2)/(3*b) + sqrt(c + d*x**2)*(-a*d**2 + 2*b*c*d)/b**2 + c**3*atan(sqrt(c + d*x**2)/sqrt(-c))
/(a*sqrt(-c)) + (a*d - b*c)**3*atan(sqrt(c + d*x**2)/sqrt((a*d - b*c)/b))/(a*b**3*sqrt((a*d - b*c)/b))

________________________________________________________________________________________

Giac [A]  time = 1.14521, size = 227, normalized size = 1.83 \begin{align*} \frac{1}{3} \,{\left (\frac{3 \, c^{3} \arctan \left (\frac{\sqrt{d x^{2} + c}}{\sqrt{-c}}\right )}{a \sqrt{-c} d} + \frac{{\left (d x^{2} + c\right )}^{\frac{3}{2}} b^{2} + 6 \, \sqrt{d x^{2} + c} b^{2} c - 3 \, \sqrt{d x^{2} + c} a b d}{b^{3}} - \frac{3 \,{\left (b^{3} c^{3} - 3 \, a b^{2} c^{2} d + 3 \, a^{2} b c d^{2} - a^{3} d^{3}\right )} \arctan \left (\frac{\sqrt{d x^{2} + c} b}{\sqrt{-b^{2} c + a b d}}\right )}{\sqrt{-b^{2} c + a b d} a b^{2} d}\right )} d \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(5/2)/x/(b*x^2+a),x, algorithm="giac")

[Out]

1/3*(3*c^3*arctan(sqrt(d*x^2 + c)/sqrt(-c))/(a*sqrt(-c)*d) + ((d*x^2 + c)^(3/2)*b^2 + 6*sqrt(d*x^2 + c)*b^2*c
- 3*sqrt(d*x^2 + c)*a*b*d)/b^3 - 3*(b^3*c^3 - 3*a*b^2*c^2*d + 3*a^2*b*c*d^2 - a^3*d^3)*arctan(sqrt(d*x^2 + c)*
b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*a*b^2*d))*d